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ON THE GENERAL SOLUTION FOR TORSION OF
POLAR ELASTIC MEDIA

R. Storanovic* and D. BLaGosgvict
Belgrade University

Abstract—An approach is developed for determining general solutions for prescribed deformations in the strain-
gradient theory of the polar elastic materials. Detailed solution is given for the pure torsion. Owing to the influence
of the couple-stresses, the Poynting effect appears as a linear effect.

1. INTRODUCTION

ErreCTS of couple-stresses in elasticity attract since the papers of Giinther in 1958 [1] and
of Schifer in 1962 [2] great attention. Most of the efforts, however, are concentrated on the
investigations of these effects in the linear elasticity and on the concentration of stress
around discontinuities {cracks, etc.) in a body. For references see [3]-[12].

The aim of this paper is to investigate the possibility of finding general solutions in
Rivlin’s sense [13], [14] for the non-linearized constitutive relations. Qur considerations
are restricted to the so-called polar elastic materials for which the internal energy is a
function of the first and second order deformation gradients. The constitutive relations for
such materials are derived by Grioli [15] and Toupin [16].

We shall use the notation of the two-point tensor fields. The points of a body in the
initial (undeformed) configuration are referred to a system of material coordinates XX
with the metric tensor Gy, ; the points of the deformed configuration of the body are referred
to a system of spatial coordinates x* with the metric tensor g,,. A deformation is represented
by the mappings

xF = xMX1 X%, X3); (LY
XK = XX(x!, x%, x3). (1.2)

All capital latin indices will denote components of tensors with respect to the material
frame of reference, and small latin indices will denote tensors with respect to the spatial
frame of reference. The comma denotes the partial, and the semicolon the total covariant
differentiation.

Under the assumption that the internal energy is a function of x% ; and x%, ; Toupin [17]
derived the constitutive relations for a polar elastic material in the form

t“'j’=p[gi( de X oe i )] (1.3)
ok T xR :

xiexky, (1.4)

mi® = _ 2t 66
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where %7 is the symmetric part of the stress tensor ¢, m'U® is the symmetric part of the
couple-stress tensor m* = —m/* and p is the density of matter.

From the invariance requirement for the internal energy function under rigid body
motions and from the symmetry properties of the couple-stress tensor Toupin obtained
13 partial differential equations with 27 variables x%;, x%, ,

af G % )]
g N —o, (1.5)
[: (6/\";(1( ax‘;(KL K (i)
(gil 58 Yk k) 0 {1 6)
o X X = Q. .
T Ol KL (k)

The internal energy is an arbitrary function of 27— 13 = 14 independent solutions of the
system (1.5), {1.6). The solutions are

Cikr = gktxi;cxxl;u (1.7
Dy = %CM(K,L) (1-8)
and the constitutive equations can now be written in the form
. & , . 4 oe .

19D = pl—Z x4+ — ————xxh) 1, 1.9)
p aC,, KN T3 g XKLy (1.9)

. 4 dg
m = g xtxU M, 1.10
3paDMKL KX XM ( )

The constitutive equations in this form are not suitable for the establishment of general
solutions. In the next section we shall transform these equations to the spatial form. It is
possible, in the so-obtained form of the constitutive relations, to eliminate the deformation
gradients and to express the stress and the couple-stress tensors as explicit functions of
certain measures of strain, but in that case stress and couple-stress are referred to the unit
area of the initial state. In section 3 the constitutive relations are further transformed to a
form in which the stress and couple-stress tensors are referred to the spatial system of
reference, and the strain energy is a function of the invariants of the spatial measures of
strain. The relations obtained will be used in section 4 for the analysis of torsion of a circular
cylinder. The results obtained reduce under suitable conditions to the well-known results
in the non-polar case but the Poynting effect, owing to the influence of couple-stresses,
appears as an effect of the first order.

2. SPATIAL FORM OF THE CONSTITUTIVE RELATIONS

The constitutive relations (1.3), (1.4), or (1.9), (1.10) contain the material deformation
gradients x¥, X, . To obtain those relations containing the spatial gradients we shall use
the relations

X4xb, = &b, 2.1

_ o .
Xgp, = — XM XPex xIpp (2.2)
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From the chain-rule for differentiation,

¢ de 0XA 0 X4

[ 23
Bk, ~ OXA Ot T 0K, O @3
de  0e 0X (24)

Oxker  OXA, Oxiy '

we obtain from (1.3) and (1.4) the expressions
O¢ de

t{U) — _pg aXK XK+2an X,kl s (2.5)
iR 'S (2.6)

= pg" 5X it

However, in the relations (2.5) and (2.6) the symmetry properties of t” and m'“® are not
preserved. The condition that the antisymmetric part of the right-hand side of (2.5) vanishes
is equivalent to the requirement for the internal energy of the form

e = o X%, X% 2.7)
to be invariant under rigid-body motions (cf. Toupin [17]})

J¢ de
[gu(axl( + 2axK K ](U) = 0. (28)

From the antisymmetry of the couple-stress tensor, m”* = —m#* and from the sym-
metry of the left-hand side in (2.6) it follows that the right-hand side of that equation must
satisfy the following ten conditions

¢
g"(———w—Xf‘):' = 0. (2.9)
[ 6X§k l (ijk)

The internal energy ¢ is now an arbitrary function of the independent solutions of 13
partial equations (2.8) and (2.9) with 27 independent variables X% and X%,. The number of
independent solutions is 27— 13 = 14, and the solutions are

_CIMN = gmnxl;lnXI;\:”
L (2.10)
RLMN = %CS[LC}V;]N.

There are 36 such functions, but not all of them are independent, since they are satisfying
34+ 1+10+8 = 22 relations of the form

-1
C[MN] — 0, RILMNY 0, R(LMN) — 0’

RLMN 4 RMLN __ pNML_ pLNM _ (2.11)
The constitutive relations read now
TUB = _2p, de —t‘M(AcB)N 4 _LEML(AcB)N (2.12)
3 JRMIF)

acMN
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O

MAEO = 26w ARIMN

CMAC’ “‘CC’N (2.13)
with
EMLA — pMAL _ %RLMA+%‘C§§§LESA
and o
T*% = JX4X5Y,
MABC - fX;ngX;ckmijk’
S= detx¥.

It must be noted that the invariance condition (2.7) for the internal energy follows
directly from (1.3) and therefore (2.8) does not represent a new restriction for ¢, The same
holds for (2.9) since it is a direct transform of the relation (1.4). Hence, the constitutive
relations (2.12) and (2.13) are valid in general.

The expressions (2.12) and (2.13), however, are referred to the initial state coordinates,
giving stress and couple-stress per unit area of the undeformed body. Inorder to obtain the
components of stress and couple-stress in terms of spatial coordinates we shall assume that
the material strain tensors C and D may be replaced in the internal energy function by the
analogous spatial strain tensors ¢ and d, defined by the expressions

Co = Gpn X XY
" N . (2.14)
dmm' = §(Crm,nw Crn,m) = §Cr(m,n]'

Obviously, the strain energy ¢ cannot, in general, be a function of ¢ and d, except for
some special classes of materials.

Writing
de 89 OC 65 od
- mnr 2.
OXA ™ Gy 0X4 " e OXA 1)
and
Je de dad :
e — 2.16
3XE = ddy AXA (216)
the stress—strain relations (2.5) can be transformed to the form
. Je il
) ilp 2——d (] , 217
t pl: ( ac] Cln+ adj lmn admn] mnl)] ( )
and the condition (2.8) obtains the form
Jg de de i
i 2 d —d ={. 2.18
[g (2 5Cm 't ¥ admn) m"{) j il ( }
Similarly, expression (2.6) for the couple-stress tensor transforms to
- d¢ dg
k) _ il 2
mih = 3pg’ (ad,,,k, admj,‘) > 219

and the symmetry condition (2.8) becomes

G o O ) ] B
gt 1 Cm = (. (2.20)
|: (admjk ad’"kf l (i jk)
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The conditions (2.18) represent a set of three linear partial equations with 6+8 = 14
independent variables ¢;; and d,;,. This set of equations admits 14—3 = 11 independent
solutions. But the ten equatlons (2.20) also represent restrictions on the arbitrariness of
the strain energy function ¢. The equations (2.20) admit only four independent solutions.
Hence, the strain cnergy is an arbitrary function of only four simultancous solutions of the
cquations (2.18) and (2.20).

If we introduce now the deviator y; of the second-order couple-stress tensor m¥,

mt = Je,m” (2.21)

where ¢,;; is the totally antisymmetric Ricci tensor, we have

fy = mi—smok, k=0 (222)
(m; = mib
and
pk = ePpk = mUk— Imyet. (2.23)
Evidently Y% = m'U" and using (2.22) we obtain the relation
W = o 4 i) (2.24)

so that the eight independent components of the third-order deviator of the couple-stress
tensor may be directly expressed in terms of the spatial strain measures ¢ and d.

3. CONSTITUTIVE RELATIONS FOR A CLASS OF POLAR ELASTIC
MATERIALS

A dual representation of the strain tensor d,,, is given by

d, = g

(3.1

mnr

and the strain energy ¢ may be considered as a function of ¢;; and d',.
The constitutive relations (2.17) for the symmetric part of the stress tensor have now

the form

(71;

i = — pgir|2 "'(. d' d' 51 _ _dl 3.2)

‘d’ ”d' odb,

and the expression for the deviatoric part of the couple-stress tensor becomes

1t = «6/,,,( cboh + ok — c,000%).
(3.3)
((I - (n)
The restrictive equations for the strain energy function ¢ reduce now to
98 e . e
ir[p = I /] P Y Y -
[g ( (?c. al ’d' d “If,d"o" (?df’,d")][,.j] 0. (34)

gip(. _(’:8 (,lkn+ _("?ieljn =0 3 5
] Ly T )
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The four solutions of (3.4) which satisfy (3.5) are : three basic invariants of the deforma-
tion tensor ¢ and one mixed (or joint) invariant of the tensors ¢ and d,

[, = 0ict, H, = 30%chet
I, = boteceeger, 0, = cid",. (3.6)

Accordingly, ¢ is now an arbitrary function of the invariants (3.7), and the constitutive
relations (3.2) and (3.3) become

) = t(l}) "H (Ilr”glj+( du1+(1duz) (3’])

i = 1

Ui gp "II (3C, —31.ck+211.6%. (3.8)

*
Here, t is the stress tensor which appears in the non-polar theory,

Qe A, fe ol e oML
(u) - _ i I D3 39
: 26\G +a11c ae. TaNL G:9)

The invariance group of the strain energy function ¢, [which is a function of the invariants
(3.7)], and of the constitutive relations (3.8), (3.9), is the proper orthogonal group [18].
Thus, the material whose elastic response is described by the constitutive equations (3.8)
and (3.9) is the isotropic material with no center of symmetry.

4. APPLICATION: TORSION OF AN INCOMPRESSIBLE
HOMOGENEOUS CIRCULAR CYLINDER

In the theory of non-polar hyperelastic materials, torsion of a circular cylinder is one of
the most impressive examples of Rivlin’s [13], [14] general solutions. In the theory of polar
hyperelastic materials, gradients of vorticity are the sources of couple-stresses and torsion
is one of the simplest deformations in which one may study the influence of couple-stresses
and compare the results with those obtained by Rivlin in the non-polar case.

Our treatment of the problem is analogous to Truesdell’s [19] exposition of Rivlin’s
work.

Let spatial and material coordinates be cylindrical coordinates,

ixt x3 x? = {9z}, (4.1)
(X', X%, X3 ={R, O, Z}. (4.2)

We are regarding the torsion of a full homogeneous cylinder of radius a. The deformation
is given by
r=R, 9=0O+KZ :=2Z, (4.3)
or
R=r, ®=93-Kz, Z = z. (4.4)
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The mixed deformation tensor ¢ is represented by the matrix

} 0 0
=40 1 -K (4.5)
0 —r*K 1+4rK

and its principal invariants are
I, = I, = 3+12K?, HI, =1 (4.6)

After the covariant differentiation of the covariant components of ¢, from (2.14) and
(3.1) we obtain the components of the mixed second-order tensor d*;:

YK 0 0
i} =9 0 ¥K -3rK?, (4.7
0 0 —-3rK?
and from (3.7),. (4.5) and (4.7) it follows that
I, =0. (4.8)

m
Now from (3.8) we obtain directly the components of the symmetric part of the stress
tensor, which in matrix form reads

—3rK 0 0

i * ‘e K
M = (1 ”}+m 0 —3i- K, (4.9)

0 irk? %K
and for the deviatoric part of the couple-stress tensor we have from (3.9)
~rK* 0 0
[k | R 242
i = 0 2rK IK L. (4.10)
9 ¢ll,
0 3r’K? —r’K?
* Py
The part 1 of the stress tensor coincides with the components of stress in the non-
polar case {p is the hydrostatic pressure),

* Ot ie * *
"= —Hz(;; _ﬂ:')' D=0, V=0
:22 _ 1 ?“+‘>,—2K2 ce Y23 2K 0e de
-2 < oLl t = (ﬁ:+(:‘[I: s (4.11)

A
2 ce

*1 *
7=tk
oIl
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Comparing the components of stress t*) in the polar case with the components of
stress in the non-polar case, we see that the differences are only quantitative.

The equilibrium conditions in the absence of volume forces and couples reduce to the
equations

(=t 44 = 0, (4.12)

Since the antisymmetric part of the stress tensor is connected with the couple-stress
tensor by the relation

) = mijk

it follows that
0y = mi; = mS

and from (2.22) we have

=
Hence, the constitutive relations (4.10) are sufficient for the determination of the divergence
t[}“ of the non-symmetric part of the stress tensor. From (4.10) we easily find that

= 0

for all i = 1,2, 3. The equilibrium equations (4.12) reduce now to the form which contains
only the symmetric components of the stress tensor. Since all invariants I, II, I, are

functions of r only, and III, = 1, the strain energy is a function of r only and the equilibrium
equations reduce to

At 2,k 08\ el _
ar(t 3’Kan,,,) Ko =0
(4.13)
6?11 a?ll
——— == —_— = O
9 0 oz ’
and we have

2 Oe 5 ZJ" Je

= K- 10K = 4 4.14
t 3rKaHer ) raIc r (4.14)

if the surface r = a of the cylinder is to be free of traction. In the non-polar case (d¢/C11,) = 0

and (4.14) obtains the usual form.
The normal force which must be applied at the ends of the cylinder to prevent the
dilatation or contraction of the cylinder when twisted is

N = Zn'[ t33r dr. (4.15)

0

Using (4.9), (4.11) and (4.14) we obtain

“11_ 0de r de J¢
N = K- 2 _p2 .
2n J; [2K6Hmr+2K (J; ralc dr—r ch):lr dr, (4.16)
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which is equivalent to

% a
N = N+nKJ r? dr, 417
0 m

where

N = — 2 X 2. dr 4.18
N = —znK +26Hd (4.18)

is the normal force in the non-polar case.

From (4.17) it follows that in the polar case the force that must be applied to the ends of
the cylinder in order to prevent its dilatation (or contraction) has a term linear in K, and
in the non-polar case the lowest power of K is two. Hence, in the case of polar isotropic
elastic materials the Poynting effect is not an effect of the second order, but of the first order.
For small twists the internal energy ¢ may be approximated by a quadratic polynomial

e = alZ+ Bl +7yI1,,
and the expression (4.16) gives for the normal force

2 6
N = KT 3 LICINP K“%,

which in the first approximation reduces to the linear relation

nya®
N~ K——
3

in which vy is an unknown coefficient.
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Abcrpakt—IIpennaraercs crnoco6 ans omnpenesieHus OOLWMX peWeHWi I 3aaaHHbix aedopmaumii B
TEOPHM TPaaueHTa OePOopPMALMH MONAPHOYNPYrux Mmatepuano. Ilpusoautcs moapobuoe pelueHune nis

caydas dMCToro Kpy4eHusi. 3ddext [MoiHTHHra oxka3biBaeTcsi JuHEHHbIM 3(deKTOM BCIENCTBE BIHAHHMA
MOMEHTHbIX HANpPsXKEeHHH.



