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ON THE GENERAL SOLUTION FOR TORSION OF
POLAR ELASTIC MEDIA

R. STOJANOVIC* and D. BLAGOJEVICt

Belgrade University

Abstrad-An approach is developed for detennining general solutions for prescribed deformations in the strain
gradient theory ofthe polar elastic materials. Detailed solution is given for the pure torsion. Owing to the influence
of the couple-stresses, the Poynting effect appears as a linear effect.

1. INTRODUCTION

EFFECTS of couple-stresses in elasticity attract since the papers of Gunther in 1958 [1] and
of Schafer in 1962 [2J great attention. Most of the efforts, however, are concentrated on the
investigations of these effects in the linear elasticity and on the concentration of stress
around discontinuities (cracks, etc.) in a body. For references see [3]-[12].

The aim of this paper is to investigate the possibility of finding general solutions in
Rivlin's sense [13J, [14] for the non-linearized constitutive relations. Our considerations
are restricted to the so-called polar elastic materials for which the internal energy is a
function of the first and second order deformation gradients. The constitutive relations for
such materials are derived by Grioli [15] and Toupin [16].

We shall use the notation of the two-point tensor fields. The points of a body in the
initial (undeformed) configuration are referred to a system of material coordinates X K

with the metric tensor GKL ; the points of the deformed configuration of the body are referred
to a system of spatial coordinates x k with the metric tensor gkl' A deformation is represented
by the mappings

xk = Xk(X 1, X 2, X 3);

X K = XK(X 1
, x 2 , x 3).

(1.1)

(1.2)

(1.4)

(1.3)

All capital latin indices will denote components of tensors with respect to the material
frame of reference, and small latin indices will denote tensors with respect to the spatial
frame of reference. The comma denotes the partial, and the semicolon the total covariant
differentiation.

Under the assumption that the internal energy is a function ofX~K;and X~KL;Toupin [17]
derived the constitutive relations for a polar elastic material in the form

n ['k( 01>. 01> .)Jt') = P g' o~ X~K+ :d; X~KL ,
;K UX;KL

mi(jk) = 2 II 01> ._.k
- pg~x~KxiL'

uX;KL
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where tUj) is the symmetric part of the stress tensor tid, m/Uk) is the symmetric part of the
couple-stress tensor m/jk - mj/k, and p is the density of matter.

From the invariance requirement for the internal energy function under rigid body
motions and from the symmetry properties of the couple-stress tensor Toupin obtained
13 partial differential equations with 27 variables X7K' X7KL'

(1.5)

(1.6)

The internal energy is an arbitrary function of 27 ~ 13 = 14 independent solutions of the
system (1.5), (1.6). The solutions are

CKL = gkIX7Kx;L'

DKLM ~CM(K,L)

and the constitutive equations can now be written in the form

(ij) _ (_~~ i j ~ __ OF; (i j) )t - p,., X;KX;L +;, X;KX;LM ,
cCKL 3 UDMKL

m/Uk ) = 4 OF; .i U k)
- -3 P-;:;;---X;KX;LX;M'

UDMKL

(1.7)

(1.8)

(1.9)

(1.10)

The constitutive equations in this form are not suitable for the establishment of general
solutions. In the next section we shall transform these equations to the spatial form. It is
possible, in the so-obtained form of the constitutive relations, to eliminate the deformation
gradients and to express the stress and the couple-stress tensors as explicit functions of
certain measures of strain, but in that case stress and couple-stress are referred to the unit
area of the initial state. In section 3 the constitutive relations are further transformed to a
form in which the stress and couple-stress tensors are referred to the spatial system of
reference, and the strain energy is a function of the invariants of the spatial measures of
strain. The relations obtained will be used in section 4 for the analysis of torsion ofa circular
cylinder. The results obtained reduce under suitable conditions to the well-known results
in the non-polar case but the Poynting effect, owing to the influence of couple-stresses,
appears as an effect of the first order.

2. SPATIAL FORM OF THE CONSTITUTIVE RELATIONS

The constitutive relations (1.3), (1.4), or (1.9), (1.10) contain the material deformation
gradients X7K' X~KL' To obtain those relations containing the spatial gradients we shall use
the relations

j - - X M xP xq x j
X;KI, - ;pq;K;L ;M'

(2,1)

(2.2)
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From the chain-rule for differentiation,

ae ae ax~ ae aX~b
~ =~~+ ::lxA ----;t.---,
uX;K oX;a UX;K U ;ab UX;K

as iJc aX~b

aX~KL = aX~n aX~KL'

we obtain from (1.3) and (1.4) the expressions

(ij) _ _ Il(~ K ~ K)
t - pg aX5X;I+2oX;kjkX;kl,

mi(jk) = ngil~XK
r oXK. ;1'

;Jk
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(2.3)

(2.4)

(2.5)

(2.6)

(2.9)

(2.7)

(2.10)

However, in the relations (2.5) and (2.6) the symmetry properties of t(ij) and mi(jk) are not
preserved. The condition that the antisymmetric part of the right-hand side of(2.5) vanishes
is equivalent to the requirement for the internal energy of the form

s = s(X~L X~l)

to be invariant under rigid-body motions (cf. Toupin [17])

[ Il( os K iJc K ) Jg aX5X;I+2 aX5k X;kl (ii) = 0. (2.8)

From the antisymmetry of the couple-stress tensor, mijk = - mjlk, and from the sym
metry of the left-hand side in (2.6) it follows that the right-hand side of that equation must
satisfy the following ten conditions

[ Il( oe K)Jg -K-X;l = 0.
aX;jk (ijk)

The internal energy e is now an arbitrary function of the independent solutions of 13
partial equations (2.8) and (2.9) with 27 independent variables X~ and X~l' The number of
independent solutions is 27 -13 = 14, and the solutions are

-1

C
MN mnxMxNg ;m ;n,

-1 -1

R LMN iCS[LC:',flN.

There are 36 such functions, but not all of them are independent, since they are satisfying
3+ 1+ 10+ 8 = 22 relations of the form

-1
clMNJ = 0, RILMNI = 0, R(LMN) = 0,

R LMN + R MLN _ R NML _ R LNM = 0.

The constitutive relations read now

T(AB) = -2p (~CM(ACB)N_~ as EML(ACB)N)
o -1 3 iJRM(LN) ,

iJC
MN

(2.11 )

(2.12)
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(2.13)

and
TAB =

-I 1

;!RLMA +1.CMLCSA
2 2 ;S . ,

<ivA B ij
J''\.;iX;jt,

<iXAXBxc ijk
,I ;i ;j ;km ,

(2.14)

1= det X~K'

It must be noted that the invariance condition (2.7) for the internal energy follows
directly from (1.3) and therefore (2.8) does not represent a new restriction for c. The same
holds for (2.9) since it is a direct transform of the relation (1.4). Hence, the constitutive
relations (2.12) and (2.13) are valid in general.

The expressions (2.12) and (2.13), however, are referred to the initial state coordinates,
giving stress and couple-stress per unit area of the undeformed body. In order to obtain the
components of stress and couple-stress in terms of spatial coordinates we shall assume that
the material strain tensors C and D may be replaced in the internal energy function by the
analogous spatial strain tensors c and d, defined by the expressions

Crn" == GMNX~;nX,%,

dmnr == !(C rm•n - Crn,m) == tCrlm,nj'

Obviously, the strain energy c cannot, in general, be a function of c and d, except for
some special classes of materials.

Writing

and
elf, elc admnr

aX1aj 8dmnr oX1a/

the stress-strain relations (2.5) can be transformed to the form

t(ij) = p[gu( 2a~:Cln+2O::n dlmn +a~:nj dmnl ) ].

and the condition (2.8) obtains the form

[ 1I( oe oe or;)J -g 2~Cln+2 "d.-d1mn + "d-dmnl .. - O.
ve)n U jmn () mn) I')]

Similarly, expression (2.6) for the couple-stress tensor transforms to

i(jk) _1. il(~ ~)
m - 3Pg ad + ad . Cml'

mkj rnjk

and the symmetry condition (2.8) becomes

[ 'I( 0" oe) Jg' --+--.- Crnl = O.
8dmjk 8dmkj (ijk)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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The conditions (2.18) represent a set of three linear partial equations with 6+8 = 14
independent variables c ij and d jjk . This set of equations admits 14-3 = 11 independent
solutions. But the ten equations (2.20) also represent restrictions on the arbitrariness of
the strain energy function 1:. The equations (2.20) admit only four independent solutions.
Hence, the strain energy is an arbitrary function of only four simultaneous solutions of the
eq uations (2.1 ~) and (2.20).

If we introduce now the deviator f1;,k of the second-order couple-stress tensor m;,\

where epij is the totally antisymmetric Ricci tensor, we have

Irk = m·k - 1m (jk " k·
k == 0p p 3 I p' r

and

Evidently f1
i
(jk) = m iUk ) and using (2.22) we obtain the relation

f1i j k = ~2miUk) + mk(i j )),

(2.21 )

(2.22)

(2.231

(2.24)

so that the eight independent components of the third-order deviator of the couple-stress
tensor may be directly expressed in terms of the spatial strain measures c and d.

3. CONSTITUTIVE RELAnONS FOR A CLASS OF POLAR ELASTIC
MATERIALS

A dual representation of the strain tensor dm"r is givcn by

(3.1)

and the strain energy c; may be considered as a function of ci) and d1
r .

The constitutive relations (2.17) for the symmetric part of the stress tensor have now
the form

(ij) _ iP( (11:. .. ('I: I ('I: I' ('I: . )
t - - PI? 2". ("P + :;di. d. p +'d1 dt(j~ - ~dP dJ

r •
(.( J" (..j ( ..r (. .r

and the expression for the deviatoric part of the couple-stress tensor becomes

I ('I:
f1/ = CjP (lJp(c~(j~, + ('~i5~ - CI(j~,(j~)·

.m

(c I == c:)

The restrictive equations for the strain energy function I: reduce now to

(3.2)

(3.3)

(3.4)

(3.5)
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The four solutions of (3.4) which satisfy (3.5) are: three basic invariants of the deforma
tion tensor c and one mixed (or joint) invariant of the tensors c and d,

Ie = bbc~,

III - l>;abe ,p q r
C - 6(1pqr(a CbCe, (3.6)

Accordingly, I: is now an arbitrary function of the invariants (3.7), and the constitutive
relations (3.2) and (3.3) become

(3.7 )

(3.8)

*Here, t is the stress tensor which appears in the non-polar theory,

(3.9)

The invariancc group of the strain energy function D, [which is a function ofthe invariants
(3.7)J, and of the constitutive relations (3.8), (3.9), is the proper orthogonal group [18].

Thus, the material whose elastic response is described by the constitutive equations (3.8)
and (3.9) is the isotropic material with no center of symmetry.

4. APPLICAnON: TORSION OF AN INCOMPRESSIBLE
HOMOGENEOUS CIRCULAR CYLINDER

In the theory of non-polar hypcrelastic materials, torsion of a circular cylinder is one of
the most impressive examples of Rivlin's [13J, [14J general solutions. In the theory of polar
hyperelastic materials, gradients of vorticity are the sources of couple-stresses and torsion
is one of the simplest deformations in which one may study the influence of couple-stresses
and compare the results with those obtained by Rivlin in the non-polar case.

Our treatment of the problem is analogous to Truesdell's [19J exposition of Rivlin's
work.

Let spatial and material coordinates be cylindrical coordinates,

(4.1)

(4.2)

We are regarding the torsion ofa full homogeneous cylinder of radius a. The deformation
is given by

or

r= R,

R = r,

a = E>+KZ,

e = a-Kz,

z = Z,

Z = z.

(4.3)

(4.4)
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The mixed deformation tensor c is represented by the matrix
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o
(4.5)

and its principal invariants are

(4.6)

After the covariant differentiation of the covariant components of c, from (2.14) and
(3.1) we obtain the components of the mixed second-order tensor d~j:

o

o
{~} ~ 1t~K

and from (3.7)4' (4.5) and (4.7) it follows that

lIm = O.

(4.7)

(4.8)

Now from (3.8) we obtain directly the components of the symmetric part of the stress
tensor, which in matrix form reads

-jrK 0 0

._ * __ {lr.
2 K

~rK2.f t(lil} = {t(lin + 0 -3---' (4.9)
t I ~llm r

0 lrK 2 ~rK

and for the deviatoric part of the couple-stress tensor we have from (3.9)

-r2 K 2 0 0
J .k 1 _ 1 (if,

0 2r2K 2 3K (4.10)lPI ( - 9 'II
C m

° 3r2 K 2 _ r2K 2

*The part r(ij) of the stress tensor coincides with the components of stress in the non-
polar case (p is the hydrostatic pressure),

*t(t2) = 0, *t(13) = 0,

(4.11 )
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Comparing the components of stress t(ij) in the polar case with the components of
stress in the non-polar case, we see that the differences are only quantitative.

The equilibrium conditions in the absence of volume forces and couples reduce to the
equations

(4.12)

Since the antisymmetric part of the stress tensor is connected with the couple-stress
tensor by the relation

t[ijJ = mijk
.k'

it follows that

tli)] = m ijk = mi(jk)
,j ,k) , k)

and from (2.22) we have

Hence, the constitutive relations (4.10) are sufficient for the determination of the divergence
t~y] of the non-symmetric part of the stress tensor. From (4.10) we easily find that

lI i (jk) - 0
r,jk -

for all i = 1,2,3. The equilibrium equations (4.12) reduce now to the form which contains
only the symmetric components of the stress tensor, Since all invariants Ie' lIe' 11m are
functions ofr only, and IIIe = 1, the strain energy is a function ofr only and the equilibrium
equations reduce to

*ot 11

W=O,

(4.13)

and we have

(4.14)

if the surface r = a of the cylinder is to be free of traction. In the non-polar case (ocjollm) = 0
and (4.14) obtains the usual form.

The normal force which must be applied at the ends of the cylinder to prevent the
dilatation or contraction of the cylinder when twisted is

Using (4.9), (4.11) and (4.14) we obtain

f.a [1 oc (f' Ot oc )JN = 2rc 0 "2 K oII
m

r+2K
2

a role dr-r
2

olle r dr,

(4.15)

(4.16)
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* fa oe
N = N +nK r2 all dr,

o m
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(4.17)

(4.18)

is the normal force in the non-polar case.
From (4.17) it follows that in the polar case the force that must be applied to the ends of

the cylinder in order to prevent its dilatation (or contraction) has a term linear in K, and
in the non-polar case the lowest power of K is two. Hence, in the case of polar isotropic
elastic materials the Poynting effect is not an effect of the second order, but of the first order.
For small twists the internal energy e may be approximated by a quadratic polynomial

e = 0:1; +PIle +yIIm,

and the expression (4.16) gives for the normal force

3 2 6nya 2 4 4 naa
N = K-

3
--K n(3a+p)a -K -3-'

which in the first approximation reduces to the linear relation

nya 3

N~K-
3

in which y is an unknown coefficient.
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A6CTpaKT-npe,LIJlaraeTCli cnoco6 ,LIJlll onpeJj,eJleHHlI 06WHX peweHHH ,LIJlll 3aJj,aHHb1X ,LIelj>0pMaI.(HH B

TeopHH rpaJj,HeHTa ,LIelj>opMaI.(HH nOJlllpHoynpyrHx MaTepHan.OB. npHBOJj,HTCli IIoJj,po6Hoe peweHHe Jj,Jlll

CJlY'fali 'fHCTOrO Kpy'feHHlI. 3lj><l>eKT nOHHTHHra OKa3bIBaeTCli JlHHeHHblM 3<1><1>eKTOM BCJleJj,CTBe BJlHlIHHlI

MOMeHTHblX HanplilKeHHH.


